Home
Class 12
MATHS
If veca,vecb,vecc are unity vectors such...

If `veca,vecb,vecc` are unity vectors such that `vecd=lamdaveca+muvecb+gammavecc` then `lambda` is equal to (A) `([veca vecb vecc])/([vecb veca vecc])` (B) `([vecb vecc vecd])/([vecb vecc veca])` (C) `([vecb vecd vecc])/([veca vecb vecc])` (D) `([vecc vecb vecd])/([veca vecb vecc])`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb))vecb (B) vecb+(vecb.vecc)/(veca.vecb))vecc (C) vecc-(veca.vecc)/(veca.vecb))vecb (D) vecb-(vecb.vecc)/(veca.vecb))vecc

If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc = 0 and lambda = veca.vecb + vecb.vecc+vecc.veca and d = veca xx vecb + vecb xx vecc + vecc xx veca , then (lambda,vecd) is

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

[vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a) [veca vecb vecd] [vecc vece vecf]-[veca vecb vecc] [vecd vece vecf] (b) [veca vecb vece ] [vecf vecc vecd] - [veca vecb vecf] [vece vecc vecd] (c) [vecc vecd veca] [vecb vece vecf] - [veca vecd vecb] [vecavece vecf] (d) [veca vecc vece] [vecb vecd vecf]