Home
Class 12
MATHS
If veca=(3,1) and vecb=(1,2) represent t...

If `veca=(3,1) and vecb=(1,2)` represent the sides of a parallelogram then the angle `theta` between the diagonals of the paralelogram is given by (A) `theta=cos^-1(1/sqrt(5))` (B) `theta=cos^-1(2/sqrt(5))` (C) `theta=cos^-1 (1/(2sqrt(5)))` (D) `theta = pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

cos theta sqrt(1-sin^(2)theta)=

Solve for theta : cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2)) .

If cottheta=1/(sqrt(3)) , show that (1-cos^2theta)/(2-sin^2theta)=3/5

If cottheta=1/(sqrt(3)) , show that (1-cos^2theta)/(2-sin^2theta)=3/5

int_(0)^(1) (sin theta (cos^(2) theta- cos^(2) pi//5) (cos^(2) theta - cos^(2) 2 pi //5))/(sin 5 theta)d theta

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

int (d ( cos theta))/(sqrt(1-cos^(2) theta))

The most general value of theta which satisfy both the equation cos theta =-(1)/(sqrt(2)) and tan theta =1 , is

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))