Home
Class 12
MATHS
If veca and vecb be any two mutually per...

If `veca and vecb` be any two mutually perpendiculr vectors and `vecalpha` be any vector then `|vecaxxvecb|^2 ((veca.vecalpha)veca)/(|veca|^2)+|vecaxxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha=` (A) `|(veca.vecb)vecalpha|(vecaxxvecb)` (B) `[veca vecb vecalpha](vecbxxveca)` (C) `[veca vecb vecalpha](vecaxxvecb)` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

IF veca and vecb re two vectors show that |vecaxxvecb|^2=a^2b^2-(veca.vecb)^2

If |vecaxxvecb|=2,|veca.vecb|=2 , then |veca|^(2)|vecb|^(2) is equal to

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

If veca,vecb,vecc are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is (A) veca+vecb+vecc (B) veca/|veca|+vecb/|vecb|+vec/|vecc| (C) veca/|veca|^2+vecb/|vecb|^2+vecc/|vecc|^2 (D) |veca|veca-|vecb|vecb+|vecc|vecc