Home
Class 12
MATHS
The vector veca=1/4(2hati-2hatj+hatk) (A...

The vector `veca=1/4(2hati-2hatj+hatk)` (A) is a unit vector (B) makes an angle of `pi/3` with the vector `(hati+1/2 hatj-hatk)` (C) is parallel to the vector `7/4hati-7/4hatj+7/8hatk` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

A vector coplanar with vectors hati + hatj and hat j + hatk and parallel to the vector 2hati -2 hatj - 4 hatk , is

If a vector 2hati +3hatj +8hatk is perpendicular to the vector 4hati -4hatj + alphahatk, then the value of alpha is

If a vector 2hati +3hatj +8hatk is perpendicular to the vector 4hati -4hatj + alphahatk, then the value of alpha is

Find the projection of the vector hati-2hatj+hatk on the vector 4hati-4hatj+7hatk .

find the projection of the vector hati+3hatj+7hatk on the vector 7hati-hatj+8 hatk

The projection of the vector vecA = hati - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

A vectors which makes equal angles with the vectors 1/3(hati - 2hatj + 2 hatk ) , 1/5(-4hati - 3hatk) , hatj is:

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .