Home
Class 12
MATHS
The vector vecaxx(vecbxxvecc) can be rep...

The vector `vecaxx(vecbxxvecc)` can be represented in the form (A) `alpha veca` (B) `alphavecb` (C) `alhavecc` (D) `alphavecb+betavecc`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If veca,vecb,vecc are any thre vectors then (vecaxxvecb)xxvecc is a vector (A) perpendicular to vecaxxvecb (B) coplanar with veca and vecb (C) parallel to vecc (D) parallel to either veca or vecb

Let vecaxx(vecbxxvecc)=vecb/2 and vecb, vecc are non parallel unit vectors. If angle between veca and vecb is alpha and angle between veca and vecc is beta then |alpha-beta| is equal to (A) pi/2 (B) pi/6 (C) pi/3 (D) pi/4

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca,vecb and vecc are three vectors of which every pair is non colinear. If the vector veca+vecb and vecb+vecc are collinear with the vector vecc and veca respectively then which one of the following is correct? (A) veca+vecb+vecc is a nul vector (B) veca+vecb+vecc is a unit vector (C) veca+vecb+vecc is a vector of magnitude 2 units (D) veca+vecb+vecc is a vector of magnitude 3 units

If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively of a triangle ABC then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) veca.vecb=vecc=vecc=veca.a!=0 (D) vecaxxvecb+vecbxxvecc+veccxxvecavec0

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

The vector veca+vecb bisects the angle between the vectors hata and hatb if (A) |veca|+|vecb|=0 (B) angle between veca and vecb is zero (C) |veca|=|vecb|=0 (D) none of these

If vecAxx(vecBxxvecC)=vecBxx(vecCxxvecA) and [vecA vecB vecC]!=0 then vecA.(vecBxxvecC) is equal to (A) 0 (B) vecAxxvecB (C) vecBxxvecC (D) vecCxxvecA

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are