Home
Class 12
MATHS
If veca,vecb,vecc are three coplanar uni...

If `veca,vecb,vecc` are three coplanar unit vector such that `vecaxx(vecbxxvecc)=-vecb/2` then the angle betweeen `vecb and vecc` can be (A) `pi/2` (B) `pi/6` (C) `pi` (D) `(2pi)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt2 then the angle between veca and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt2) then the angle between vea and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If |vecc|=2 , |veca|=|vecb|=1 and vecaxx(vecaxxvecc)+vecb=vec0 then the acute angle between veca and vecc is (A) pi/6 (B) pi/4 (C) pi/3 (D) (2pi)/3

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

The non zero vectors veca,vecb, and vecc are related byi veca=8vecb nd vecc=-7vecb. Then the angle between veca and vecc is (A) pi (B) 0 (C) pi/4 (D) pi/2

If veca and vecb are two vectors, such that veca.vecblt0 and |veca.vecb|=|vecaxxvecb| then the angle between the vectors veca and vecb is (a) pi (b) (7pi)/4 (c) pi/4 (d) (3pi)/4

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =