Home
Class 12
MATHS
The two lines vecr=veca+veclamda(vecbxxv...

The two lines `vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxveca)` intersect at a point where `veclamda and mu` are scalars then

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: If the vectors veca and vecc are non collinear, then the lines vecr=6veca-vecc+lamda(2vecc-veca) and vecr=veca-vecc+mu(veca+3vecc) are coplanar. Statement 2: There exists lamda and mu such that the two values of vecr in statement -1 become same

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

Lines vecr = veca_(1) + lambda vecb and vecr = veca_(2) + svecb_ will lie in a Plane if

The plane contaning the two straight lines vecr=veca+lamda vecb and vecr=vecb+muveca is (A) [vecr veca vecb]=0 (B) [vecr veca veca xxvecb]=0 (C) [vecr vecb vecaxxvecb]=0 (D) [vecr veca+vecb vecaxxvecb]=0

Let veclamda=veca times (vecb +vecc), vecmu=vecb times (vecc+veca) and vecv=vecc times (veca+vecb) , Then

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0

Find vector vecr if vecr.veca=m and vecrxxvecb=vecc, where veca.vecb!=0

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=