Home
Class 12
MATHS
If veca is any then |veca.hati|^2+|veca....

If `veca` is any then `|veca.hati|^2+|veca.hatj|^2+|veca.hatk|^2=`
(A) `|veca|^2` (B) `|veca|` (C) `2|vecalpha|` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

|vecaxxhati|^2+|vecaxxhatj|^2+|vecaxxhatk|^2= (A) |veca|^2 (B) 2|veca|^2 (C) 3|veca|^2 (D) 4|veca|^2

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+21hatj such that vecalpha=veca+vecb+vecc . Then the resolution of te vector vecalpha into components with respect to veca and vecb is given by (A) 3veca-2vecb (B) 2veca-3vecb (C) 3vecb-2veca (D) none of these

If veca is any non-zero vector, then (veca.hati)hati+(veca.hatj)hatj+(veca.veck)hatk is equal to …….

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

If veca and vecb be any two mutually perpendiculr vectors and vecalpha be any vector then |vecaxxvecb|^2 ((veca.vecalpha)veca)/(|veca|^2)+|vecaxxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha= (A) |(veca.vecb)vecalpha|(vecaxxvecb) (B) [veca vecb vecalpha](vecbxxveca) (C) [veca vecb vecalpha](vecaxxvecb) (D) none of these