Home
Class 12
MATHS
If vecb and vecc are any two mutually pe...

If `vecb and vecc` are any two mutually perpendicular unit vectors and `veca` is any vector, then `(veca.vecb)vecb+(veca.vecc)vecc+(veca.(vecbxxvecc))/(|vecbxxvecc|^2)(vecbxxvecc)=` (A) 0 (B) `veca (C) `veca /2` (D) `2veca`

Promotional Banner

Similar Questions

Explore conceptually related problems

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

Show that: (veca+vecb).{(vecb+vecc)xx(vecc+veca)|=2{veca.(vecbxxvecc)}

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [(veca+vecb+vecc,veca+vecb, vecb +vecc)] equals

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=