Home
Class 12
MATHS
If veca,vecb, vecc are unit coplanar vec...

If `veca,vecb, vecc` are unit coplanar vectors then the scalar triple product `[2veca-vecb, 2vecb-c ,vec2c-veca]` is equal to (A) `0` (B) `1` (C) `-sqrt(3)` (D) `sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The scalar triple product [(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-vecb)] is equal to

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

Let veca,vecb and vecc be three vectors. Then scalar triple product [veca vecb vecc] is equal to

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

The scalar triple product [veca+vecb-vec c" "vecb+vec c -veca" "vec c+veca-vecb] is equal to :

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [(veca+vecb+vecc,veca+vecb, vecb +vecc)] equals

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals