Home
Class 12
MATHS
The point of intersection of vecrxxveca=...

The point of intersection of `vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb` where `veca=hati+hatj and vecb=2hati-hatk` is (A) `3hati+hatj-hatk` (B) `3hati-hatk` (C) `3hati+2hatj+hatk` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find vecaxxvecb and |vecaxxvecb| if veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk

If veca=(hati+hatj+hatk), and veca.vecb=1 and vecaxxvecb = -(hati-hatk) then vecb is (A) hati-hatj+hatk (B) 2hatj-hatk (C) hatj (D) 2hati

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

Find |vecaxxvecb|,if veca=hati-7hatj+7hatkandvecb=3hati-2hatj+2hatk .

Find the angle between the vectors veca+vecb and veca-vecb if veca=2hati-hatj+3hatk and vecb=3hati+hatj-2hatk .

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

Find (veca+3vecb)*(2veca-vecb) . If veca=hati+hatj+2hatk, hatb=2hati+2hatj-hatk

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

If vecA,vecB,vecC are three vectors respectively given by 2hati+hatk, hati+hatj+hatk and 4hati-3hatj+7hatk, then the vector vecR which satisfies the relations vecRxxvecB=vecCxxvecB and vecR.vecA=0 is (A) 2hati-8hatj+2hatk (B) hati-4hatj+2hatk (C) -hati-8hatj+2hatk (D) none of these

If vecA,vecB,vecC are three vectors respectively given by 2hati+hatk, hati+hatj+hatk and 4hati-3hatj+7hatk, then the vector vecR which satisfies the relations vecRxxvecB=vecCxxvecB and vecR.vecA=0 is (A) 2hati-8hatj+2hatk (B) hati-4hatj+2hatk (C) -hati-8hatj+2hatk (D) none of these