Home
Class 12
MATHS
If vecu,vecv and vecw are three non copl...

If `vecu,vecv and vecw` are three non coplanar vectors then `(vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)` equals (A) `vecu.(vecvxxvecw)` (B) `vecu.vecwxxvecv` (C) `2vecu.(vecvxxvecw)` (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA,vecB and vecC are three non coplanar then (vecA+vecB+vecC).{(vecA+vecB)xx(vecA+vecC)} equals: (A) 0 (B) [vecA vecB vecC] (C) 2[vecA vecB vecC] (D) -[vecA vecB vecC]

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

If vec a ,\ vec b ,\ vec c are three non coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx) vec a+ vec c)] equals [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Which of the followind expression are meanigful ? (A) vecu.(vecvxxvecw) (B) (vecu.vecv)xxvecw (C) (vecu.vecv).vecw (D) vecuxx(vecv.vecw)

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is