Home
Class 12
MATHS
If vecAxx(vecBxxvecC)=vecBxx(vecCxxvecA)...

If `vecAxx(vecBxxvecC)=vecBxx(vecCxxvecA) and [vecA vecB vecC]!=0 then vecA.(vecBxxvecC)` is equal to (A) `0` (B) `vecAxxvecB` (C) `vecBxxvecC` (D) `vecCxxvecA`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

(vecbxxvecc)xx(veccxxveca)=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

If [vecaxxvecb vecbxxvecc veccxxveca]=lamda [veca vecb vecc]^2 then lamda is equal to (A) 1 (B) 2 (C) 3 (D) 0

If (vecaxxvecb)xxvecc=vecax(vecbxxvecc) then (A) (veccxxveca)xxvecb=0 (B) vecbxx(veccxxveca)=0 (C) veccxx(vecaxxvecb)=0 (D) none of these