Home
Class 12
MATHS
Given (vecaxxvecb)xx(veccxxvecd)=5vecc+6...

Given `(vecaxxvecb)xx(veccxxvecd)=5vecc+6vecd` then the value of `veca.(vecbxx(veca+vecc+2vecd))` is (A) 7 (B) 16 (C) -1 (D) 4

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is (a) 0 (b) 1 (c) 4/3 (d) none of these

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{veca xx [vecb xx (vecc xx veca)]} is:

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

veca,vecb,vecc are 3 vectors, such that veca+vecb+vecc=0, |veca|=1,|vecb|=2,|vecc|=3, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) 0 (B) -7 (C) 7 (D) 1

Assetion: (vecaxxvecb)xx(veccxxvecd)=[veca vecc vecd]vecb-[vecb vecc vecd]veca Reason: (vecaxxvecb)xxvecc=(veca.vecc)vecb-(vecb.vecc)veca (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.