Home
Class 12
MATHS
Three points whose position vectors are ...

Three points whose position vectors are `veca,vecb,vecc` will be collinear if (A) `lamdaveca+muvecb=(lamda+mu)vecc` (B) `vecaxxvecb+vecbxxvecc+veccxxveca=0` (C) `[veca vecb vecc]=0` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

Prove that the points A,B,C wth positon vectros veca,vecb,vecc are collinear if and only if (vecbxxvecc)+(veccxxveca)+(vecaxxvecb)=vec0

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

The scalar vecA.(vecB+vecC)xx(vecA+vecB+vecC) equals (A) 0 (B) [vecA vecB vecC]+[vecB vecC vecA] (C) [vecA vecB vecC] (D) none of these

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these