Home
Class 12
MATHS
if veca,vecb,vecc are non coplanar non-z...

if `veca,vecb,vecc` are non coplanar non-zero vectors such that `vecbxxvecc=vecaxxvecb=vecc` and `veccxxveca=vecb` then `|veca|+|vecb|+|vecc|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 3. (a) |a|+|b|+|c| =0 (b) |a|+|b|+|c|=2 (c) |a|+|b|+|c| =3 (d) none of these

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 1 (a) |a|=1 (b)|a|=2 (c) |a|=3 (d) |a|=4

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca,vecb,vecc are non coplanar non zero vectors and vecn.veca=vecn.vecb=vecn.vecc=0, Show that vecn is a zero vector

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then: