Home
Class 12
MATHS
The resolved part of the vector veca alo...

The resolved part of the vector `veca` along the vector `vecb is veclamda` and that perpendicular to `vecb is vecmu`. Then (A) `veclamda=((veca.vecb).veca)/veca^2` (B) `veclamda=((veca.vecb).vecb)/vecb^2` (C) `vecmu=((vecb.vecb)veca-(veca.vecb)vecb)/vecb^2` (D) `vecmu=(vecbxx(vecaxxvecb))/vecb^2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Resolved part of vector veca and along vector vecb " is " veca1 and that prependicular to vecb " is " veca2 then veca1 xx veca2 is equl to

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If vectors veca and vecb are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is perpendicular to veca is (A) vecb+(vecbxxveca)/(|veca|^2) (B) (veca.vecb)/(vecb|^2) (C) vecb-(vecb.veca)/(|veca|)^2) (D) (vecaxx(vecbxxveca))/(vecb|^20

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb))vecb (B) vecb+(vecb.vecc)/(veca.vecb))vecc (C) vecc-(veca.vecc)/(veca.vecb))vecb (D) vecb-(vecb.vecc)/(veca.vecb))vecc

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=