Home
Class 12
MATHS
If A,B,C are three points with position ...

If A,B,C are three points with position vectors `veci+vecj,veci-hatj and pveci+qvecj+rveck` respectiey then the points are collinear if (A) `p=q=r=0` (B) `p=qr=1` (C) `p=q,r=0` (D) `p=1,q=2,r=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If P, Q, R are three points with respective position vectors hati + hatj, hati -hatj and a hati + b hatj + c hatk . The points P, Q, R are collinear, if

If P ,Q and R are three collinear points such that vec P Q= vec a and vec Q R = vec bdot Find the vector vec P R .

If a ,b ,c are the p t h ,q t h ,r t h terms, respectively, of an H P , show that the points (b c ,p),(c a ,q), and (a b ,r) are collinear.

If a ,b ,c are the p t h ,q t h ,r t h terms, respectively, of an HP , show that the points (b c ,p),(c a ,q), and (a b ,r) are collinear.

If a , b and c b respectively the pth , qth and rth terms of an A.P. prove that a(q-r) +b(r-p) +c (p-q) =0

The value of p and q(p!=0,q!=0) for which p ,q are the roots of the equation x^2+p x+q=0 are (a) p=1,q=-2 (b) p=-1,q=-2 (c) p=-1,q=2 (d) p=1,q=2

If p,q,r in R and the quadratic equation px^2+qx+r=0 has no real roots, then (A) p(p+q+r)gt0 (B) (p+q+r)gt0 (C) q(p+q+r)gt0 (D) p+q+rgt0

If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!=q!+r!=1) are coplanar then the value of pqr-(p+q+r) is (A) 0 (B) -1 (C) -2 (D) 2

Let points P,Q, and R hasve positon vectors vecr_1=3veci-2vecj-veck, vecr_2=veci+3vecj+4verck and vecr_3=2veci+vecj-2veck relative to an origin O. Find the distance of P from the plane OQR.

Consider the points P(p,0,0),Q(0,q,0) and R(0,0,r) where pqr!=0 then the equation of the plane PQR is (A) px+qy+r=1 (B) x/p+y/q+z/r=1 (C) x+y+z+1/p+1/q+1/r=0 (D) none of these