Home
Class 12
MATHS
If veca,vecb,vecc are three non coplanar...

If `veca,vecb,vecc` are three non coplanar vectors such that `vecr_1=veca-vecb+vecc,vecr_2=vecb+vecc-veca, vecr_3=vecc+veca+vecb,vecr=2veca-3vecb+3vecc if vecr=lamda_1 vecr_1+lamda_2vecr_2+lamda_3vecr_3` then
(A) `lamda_1=7/2`
(B) `lamda_1+lamda_2=3`
(C) `lamda_2+lamda_3=2`
(D) `lamda_1+lamda_2+lamda_3=4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vecc, -veca+3vecb-5vecc,-veca+2vecb-3vecc

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr.veca=0, |vecrxxvecb|=|vecr||vecb|,|vecrxxvecc|=|vecr||vecc| then [(veca, vecb, vecc)]=

Given three non-zero, non-coplanar vectors veca, vecb and vecc . vecr_1= pveca + qvecb+ vecc and vecr_2= veca + pvecb+ qvecc . If the vectors vecr_1 + 2vecr_2 and 2 vecr_1 + vecr_2 are collinear, then (p, q) is