Home
Class 12
MATHS
Assertion: If |veca|=|vecb|=|veca+vecb|=...

Assertion: If `|veca|=|vecb|=|veca+vecb|`=1, then angle between `veca and vecb is (2pi)/3`, Reason: `|veca+vecb|^2=|veca|^2+|vecb|^2+2(veca.vecb)|` (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion: |veca+vecb|lt|veca-vecb| , Reason: |veca+vecb|^2=|veca|^2+|vecb|^2+2veca.vecb. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

Assertion: |veca|=|vecb| does not imply that veca=vecb , Reason: If veca=vecb,then |veca|=|vecb| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion : If |veca|=2,|vecb|=3|2veca-vecb|=5, then |2veca+vecb|=5 , Reason: |vecp-vecq|=|vecp+vecq| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: If veca,vecb,vecc are unit such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca=-3/2 , Reason (vecx+vecy)^2=|vecx|^2+|vecy|^2+2(vecx.vecy) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

Assertion: If vecx xx vecb=veccxxvecb and vecx_|_veca then vecx=((vecbxxvecc)xxveca)/(veca.vecb) , Reason: vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assetion: (vecaxxvecb)xx(veccxxvecd)=[veca vecc vecd]vecb-[vecb vecc vecd]veca Reason: (vecaxxvecb)xxvecc=(veca.vecc)vecb-(vecb.vecc)veca (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: vecc, 4veca-vecb, and veca, vecc are coplanar. Reason Vector veca,vecb,vecc are linearly dependent. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: Let veca=hati+hatj and vecb=hatj-hatk be two vectors. Angle between veca+vecb and veca-vecb=90^0 Reason: Projection of veca+vecb on veca-vecb is zero (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.