Home
Class 12
MATHS
Assertion: If I is the incentre of /\ABC...

Assertion: If I is the incentre of `/_\ABC, then`|vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC)=0` Reason: If O is the origin, then the position vector of centroid of `/_\ABC` is (vec(OA)+vec(OB)+vec(OC))/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion: If I is the incentre of /_\ABC, then |vec(BC)| vec(IA) +|vec(CA)| vec(IB) +|vec(AB)| vec(IC) =0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vec(OA)+vec(OB)+vec(OC))/3

If I is the centre of a circle inscribed in a triangle ABC , then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC) is

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If |vec (AO) +vec (OB)| =|vec(BO) + vec(OC)| , then A, B, C form

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If vec a ,\ vec b ,\ vec c are position vectors of the vertices of a triangle, then write the position vector of its centroid.

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =