Home
Class 12
MATHS
Assertion: veca=hati+phatj+2hatk and hat...

Assertion: `veca=hati+phatj+2hatk and hatb=2hati+3hatj+qhatk` are parallel vectors `if p=3/2, q=4`, Reason: If `veca=a_1hati+a_2hatj+a_3hatk and vecb=b_1hati+b_2hatj+b_3hatk` are parallel then a_1/b_1=a_2/b_2=a_3/b_3`. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion : A^-1 exists, Reason: |A|=0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assetion: a_1,a_2,a_3,…………. an are not in G.P. Reason: a_(n+1)=a_n (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: Tr(A)=0 Reason: |A|=1 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) both A and R is false.

Assertion: a^2,b^2,c^2 are in A.P., Reason: 1/(b+c), 1/(c+a), 1/(a+b) are in A.P. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: If vec(AB)=3hati-3hatk and vec(AC)=hati-2hatj+hatk , then '|vec(AM)|=sqrt(6) Reason, vec(AB)+vec(AC)=2vec(AM) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: |veca+vecb|lt|veca-vecb| , Reason: |veca+vecb|^2=|veca|^2+|vecb|^2+2veca.vecb. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: |veca|=|vecb| does not imply that veca=vecb , Reason: If veca=vecb,then |veca|=|vecb| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: The numbers b_1,b_2,b_3,b_4 are neither in A.P. nor in G.P. Reason: The numbers b_1,b_2,b_3,b_3 are in H.P. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion : If |veca|=2,|vecb|=3|2veca-vecb|=5, then |2veca+vecb|=5 , Reason: |vecp-vecq|=|vecp+vecq| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: vecc, 4veca-vecb, and veca, vecc are coplanar. Reason Vector veca,vecb,vecc are linearly dependent. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.