Home
Class 12
MATHS
Consider three vectors veca, vecb and ve...

Consider three vectors `veca, vecb and vecc`. Vectors `veca and vecb` are unit vectors having an angle `theta` between them For vector veca,`|veca|^2=veca.veca` If `veca_|_vecb and veca_|_vecc then veca||vecbxxvecc` If `veca||vecb, then veca=tvecb` Now answer the following question: If `vecc` is a unit vector and equal to the sum of `veca and vecb` the magnitude of difference between `veca and vecb` is (A) 1 (B) `sqrt(2)` (C) `sqrt(3)` (D) `1/sqrt(2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If |vecc|=4, theta = cos^-1(1/4) and vecc=2vecb+tveca, then t= (A) 3,-4 (B) -3,4 (C) 3,4 (D) -3,-4

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca and vecb are unit vectors, then angle between veca and vecb for sqrt3 ​ veca − vec b to be unit vector is

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecb .

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Three vectors veca , vecb and vecc satisfy the condition veca+ vecb+ vecc= vec0 . Evaluate the quantity mu= veca* vecb+vecb* vecc+vecc* veca , if | veca|=3,| vecb|=4 and |vecc|=2 .