Home
Class 12
MATHS
Consider three vectors veca, vecb and ve...

Consider three vectors `veca, vecb and vecc`. Vectors `veca and vecb` are unit vectors having an angle `theta` between them For vector `veca,|veca|^2=veca.veca` If `veca_|_vecb and veca_|_vecc then veca||vecbxxvecc` If `veca||vecb, then veca=tvecb` Now answer the following question: If `|vecc|=4, theta = cos^-1(1/4) and vecc=2vecb+tveca, then t=` (A) `3,-4` (B) `-3,4` (C) `3,4` (D) `-3,-4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is a unit vector and equal to the sum of veca and vecb the magnitude of difference between veca and vecb is (A) 1 (B) sqrt(2) (C) sqrt(3) (D) 1/sqrt(2)

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is

Three vectors veca , vecb and vecc satisfy the condition veca+ vecb+ vecc= vec0 . Evaluate the quantity mu= veca* vecb+vecb* vecc+vecc* veca , if | veca|=3,| vecb|=4 and |vecc|=2 .

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb and vecc)]=4 , then [vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)] is equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: