Home
Class 12
MATHS
For vectors veca,vecb,vecc,vecd, vecaxx(...

For vectors `veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc)` Now answer the following question: `(vecaxxvecb).(veccxxvecd)` is equal to (A) `veca.(vecbxx(veccxxvecd))` (B) `|veca|(vecb.(veccxxvecd))` (C) `|vecaxxvecb|.|veccxxvecd|` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc) Now answer the following question: {(vecaxxvecb).xxvecc}.vecd would be equal to (A) veca.(vecbxx(veccxxvecd)) (B) ((vecaxxvecc)xxvecb).vecd (C) (vecaxxvecb).(veccxxvecd) (D) none of these

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then (A) (veca-vecd)=lamda(vecb-vecc) (B) veca+vecd=lamda(vecb+vecc) (C) (veca-vecb)=lamda(vecc+vecd) (D) none of these