Home
Class 12
MATHS
For vectors veca,vecb,vecc,vecd, vecaxx(...

For vectors `veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc)` Now answer the following question: `{(vecaxxvecb).xxvecc}.vecd` would be equal to (A) `veca.(vecbxx(veccxxvecd))` (B) `((vecaxxvecc)xxvecb).vecd` (C) `(vecaxxvecb).(veccxxvecd)` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(veccxxvecd) is equal to (A) veca.(vecbxx(veccxxvecd)) (B) |veca|(vecb.(veccxxvecd)) (C) |vecaxxvecb|.|veccxxvecd| (D) none of these

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then (A) (veca-vecd)=lamda(vecb-vecc) (B) veca+vecd=lamda(vecb+vecc) (C) (veca-vecb)=lamda(vecc+vecd) (D) none of these

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

For any three vectors veca,vecb,vecc their product would be a vector if one cross product is folowed by other cross product i.e (vecaxxvecb)xxvecc or (vecbxxvecc)xxveca etc. For any four vectors veca,vecb,vecc,vecd the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e. (vecaxx(vecbxxvecc))xxvecd or (vecaxxvecb)xx(veccxxvecd). Now answer the following question: (vecaxxvecb)x(veccxxvecd) would be a (A) equally inclined with veca,vecb,vecc,vecd (B) perpendicular with (vecaxxvecb)xxvecc and vecc (C) equally inclined with vecaxxvecb and veccxxvecd (D) none of these

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is