Home
Class 12
MATHS
If veca, vecb and vecc be any three non ...

If `veca, vecb and vecc` be any three non coplanar vectors. Then the system of vectors `veca\',vecb\' and vecc\'` which satisfies `veca.veca\'=vecb.vecb\'=vecc.vecc\'=1
veca.vecb\'=veca.vecb\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0` is called the reciprocal system to the vectors `veca,vecb, and vecc`.`[veca,vecb,vecc]((veca\'xxvecb\')+(vecb\'xxvecc \')+(vecc\'xxveca\'))=` (A) `veca+vecb+vecc` (B) `veca+vecb-vecc` (C) `2(veca+vecb+vecc)` (D) `3(veca\'+vecb\'+vecc\')`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc