Home
Class 12
MATHS
Let O, G, and O be the circumcentre, cen...

Let O, G, and O be the circumcentre, centroid and orthocentre of a `/_\ABC` respectively. AL and BM are perpendicular from A and B on sides BC and CA respectively.Let AD be the median and OD perpendicular to side BC. Let O be the circumcentre of `/_\ABC` and OA=OB=OC=R. Now in `/_\OBD`, OD=R cosA, In `/_\ABM`,`AO=AM sec(90^0-C)`(/_O\'AM=90^0-C) =AM cosec C=AB cosA cosecC =(ccosA)/(sinC) = 2R cosA AO\'=2OD: `vec(OA)+vec(OB)+vec(OC)` is equal (A) `vec(OO\'` (B) `2vec(O\'O)` (C) `2vec(AO)` (D) `vec(ON)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

Perpendicular bisectors of the sides AB and AC of a triangle ABC meet at O. Does the perpendicular bisector of BC pass through O?

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')

If |vec (AO) +vec (OB)| =|vec(BO) + vec(OC)| , then A, B, C form

The resultant of vectors vec(OA) and vec(OB) is perpendicular to vec(OA) . Find the angle AOB.

If D , E and F are the mid-points of the sides BC , CA and AB respectively of the DeltaABC and O be any point, then prove that OA+OB+OC=OD+OE+OF

D, E and F are the mid-points of the sides AB, BC and CA respectively of A ABC. AE meets DF at O. P and Q are the mid-points of OB and OC respectively. Prove that DPOF is a parallelogram.

The magnitude of vectors vec(OA), vec(OB) and vec (OC) in figure are equal. Find the direction of vec(OA)+vec(OB)-vec(OC) . .