Home
Class 12
MATHS
The length of projection of the segment ...

The length of projection of the segment join `(x_1,y_1,z_1) and (x_2,y_2,z_20` on te line `(x-alpha)/l=(y-beta)/m=(z-gamma)/n` is (A) `|l(x_2-x_1)+m(y_2-y_1)+n(z_2-z_1)` (B) `|alpha(x_2-x_1)+beta(y_2-y_1)+gamma(z_2-z_1)| (C) `|(x_2-x_1)/l+(y_2-y_1)/m+(z_2-z_1)/n|` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the plane through the line (x-x_1)/l_1=(y-y_1)/m_1=(z-z_1)/n_1 and parallel to the line (x-alpha)/l_2=(y-beta)/m_2=(z-gamma)/n_2

Find the coordinates of the centroid of the triangle whose vertices are (x_1,y_1,z_1) , (x_2,y_2,z_2) and (x_3,y_3,z_3) .

The equations of the line through the point (alpha, beta, gamma) and equally inclined to the axes are (A) x-alpha=y-beta=z-gamma (B) (x-1)/alpha=(y-1)/beta=(z-1)/gamma (C) x/alpha=y/beta=z/gamma (D) none of these

Show that the plane ax+by+cz+d=0 divides the line joining (x_1, y_1, z_1) and (x_2, y_2, z_2) in the ratio of (-(ax_1+ay_1+cz_1+d)/(ax_2+by_2+cz_2+d))

The equation of the plane containing the line (x-x_1)/l=(y-y_1)/m=(z-z_1)/n is a(x-x_1)+b(y-y_1)+c(z-z_1)=0,"" where (A) a x_1+b y_1+c z_1=0 (B) a l+b m+c n=0 (C) a/l=b/m=c/n (D) l x_1+m y_1+n z_1=0

Show that if the axes are rectangular the equation of line through point (x_1,y_1,z_1) at right angle to the lines x/l_1=y/m_1=z/n_1,x/l_2=y/m_2=z/n_2 is (x-x_1)/(m_1n_2-m_2n_1)=(y-y_1)/(n_1l_2-n_2l_1)=(z-z_1)/(l_1m_2-l_2m_1)

A plane which passes through the point (3,2,0) nd the line (x-4)/1=(y-7)/5=(z-4)/4 is (A) x-y+z=1 (B) x+y+z=5 (C) x+2y-z=1 (D) 2x-y+z=5

Show that the plane a x+b y+c z+d=0 divides the line joining the points (x_1, y_1, z_1)a n d(x_2, y_2, z_2) in the ratio (a x_1+b y_1+c z_1+d)/(a x_2+b y_2+c z_2+d) .

Show that the coordinates off the centroid of the triangle with vertices A(x_1, y_1, z_1),\ B(x_2, y_2, z_2)a n d\ (x_3, y_3, z_3) are ((x_1+x_2+x_3)/3,(y_1+y_2+y_3)/3,(z_1+z_2+z_3)/3)

Find the scalar components and magnitude of the vector joining the points P(x_1,y_1,z_1) and Q(x_2,y_2,z_2)