Home
Class 12
MATHS
The shortest distance between the lines ...

The shortest distance between the lines `vecr-veca+kvecb and vecr=veca+lvecc ` is (`vecb and vecc` are non collinear) (A) 0 (B) `|vecb.vecc|` (C) `(|vecbxxvecc|)/(|veca|)` (D) `(|vecb.vecc|)/(|veca|)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z where veca,vecb,vecc are given non coplasnar vectors.

The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxveca) intersect at a point where veclamda and mu are scalars then (A) veca,vecb,vecc are non coplanar (B) |veca|=|vecb|=|vecc| (C) veca.vecc=vecb.vecc (D) lamda(vecbxvecc)+mu(veccxveca)=vecc

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=