Home
Class 12
MATHS
Show that the lines (x+3)/(-3)=(y-1)/1=(...

Show that the lines `(x+3)/(-3)=(y-1)/1=(z-5)/5`and `(x+1)/(-1)=(y-2)/2=(z-5)/5`are coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines (x+3)/(-3)=y-1/1=(z-5)/5;(x+1)/(-1)=(y-2)/2=(z-5)/5 are coplanar. Also find the equation of the plane containing the lines.

Show that the lines (x+3)/(-3) = y - 1 = (z-5)/(5) and (x+1)/(-1) = (y-2)/(2) = (z-5)/(5) are coplanar. Also find their point of intersection.

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

Show that the lines (x+1)/(-3)=(y-3)/2=(z+2)/1\ a n d\ x/1=(y-7)/(-3)=(z+7)/2 are coplanar. Also, find the equation of the plane containing them.

Show that lines (x-2)/5=(y+1)/1=(z-2)/-6 and (x+3)/-8=(y-2)/-1=(z-8)/7 are coplanar.

Show that the lines (x-3)/2=(y+1)/(-3)=(z+2)/1 and (x-7)/(-3)=y/1=(z+7)/2 are coplanar. Also find the equation of the plane containing them.

Show that the lines (x-1)/1 = (y-1)/(-2)=(z-1)/1 and (x-2)/5 = (y+1)/1 = (z-2)/(-6) are coplanar.

Find the value of [a] if the lines (x-2)/(3)=(y+4)/(2)=(z-1)/(5) & (x+1)/(-2)=(y-1)/(3)=(z-a)/(4) are coplanar (where [] denotes greatest integer function)

Show that the lines (x-1)/(1) = (y)/(-5) = z/3 and (x+1)/(7) = (y)/(2) - (z-3)/(1) are perpendicular.

If the straight lines (x-1)/(2)=(y+1)/(k)=(z)/(2) and (x+1)/(5)=(y+1)/(2)=(z)/(k) are coplanar, then the plane(s) containing these two lines is/are