Home
Class 12
MATHS
A variable plane at constant distance p ...

A variable plane at constant distance p form the origin meets the coordinate axes at P,Q, and R. Find the locus of the point of intersection of planes drawn through P,Q, r and parallel to the coordinate planes.

Promotional Banner

Similar Questions

Explore conceptually related problems

A variable plane is at a distance k from the origin and meets the coordinates axes is A,B,C. Then the locus of the centroid of DeltaABC is

A variable plane at a constant distance p from the origin meets the coordinate axes in points A,B and C respectively.Through these points , planes are drawn parallel to the coordinate planes, show that locus of the point of intersection is 1/x^2+1/y^2+1/z^2=1/p^2

If a variable plane, at a distance of 3 units from the origin, intersects the coordinate axes at A,B anc C, then the locus of the centroid of Delta ABC is :

A variable plane passes through a fixed point (alpha,beta,gamma) and meets the axes at A ,B ,a n dCdot show that the locus of the point of intersection of the planes through A ,Ba n dC parallel to the coordinate planes is alphax^(-1)+betay^(-1)+gammaz^(-1)=1.

A variable plane passes through a fixed point (a,b,c) and meets the axes at A ,B ,a n dCdot The locus of the point commom to the planes through A ,Ba n dC parallel to the coordinate planes is

A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is 1/x^2+1/y^2+1/z^2=1/p^2 .

A variable plane is at a constant distance p from the origin and meets the coordinate axes in A , B , C . Show that the locus of the centroid of the tetrahedron O A B C is x^(-2)+y^(-2)+z^(-2)=16p^(-2)

A variable plane is at a constant distance p from the origin and meets the coordinate axes in A , B , C . Show that the locus of the centroid of the tehrahedron O A B Ci sx^(-2)+y^(-2)+z^(-2)=16p^(-2)dot

A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is x^(-2) + y^(-2) + z^(-2) = p^(-2) .

Find the distances of the point P(2, 3, 2) from the coordinate planes.