Home
Class 12
MATHS
Two systems of rectangular axes have ...

Two systems of rectangular axes have the same origin. If a plane cuts them at distance `a ,b ,ca n dd ,b^(prime),c '` from the origin, then a. `1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0` b. `1/(a^2)-1/(b^2)-1/(c^2)+1/(a^('2))-1/(b^('2))-1/(c^('2))=0` c. `1/(a^2)+1/(b^2)+1/(c^2)-1/(a^('2))-1/(b^('2))-1/(c^('2))=0` d. `1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a ,b ,c and a^prime ,b^(prime),c ' from the origin, then a. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0 b. 1/(a^2)-1/(b^2)-1/(c^2)+1/(a^('2))-1/(b^('2))-1/(c^('2))=0 c. 1/(a^2)+1/(b^2)+1/(c^2)-1/(a^('2))-1/(b^('2))-1/(c^('2))=0 d. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a ,b ,ca n da^(prime),b^(prime),c^(prime) respectively, prove that 1/(a^2)+1/(b^2)+1/(c^2)=1/(a^('2))+1/(b^('2))+1/(c^('2))

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a ,b ,ca n da^(prime),b^(prime),c^(prime) respectively, prove that 1/(a^2)+1/(b^2)+1/(c^2)=1/(a^('2))+1/(b^('2))+1/(c^('2))

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a ,b ,c and a^(prime),b^(prime),c^(prime) respectively, prove that 1/(a^2)+1/(b^2)+1/(c^2)=1/(a^('2))+1/(b^('2))+1/(c^('2))

If the circles x^2+y^2+2a x+c=0a n dx^2+y^2+2b y+c=0 touch each other, then (a) 1/(a^2)+1/(b^2)=1/c (b) 1/(a^2)+1/(b^2)=1/(c^2) (c) a+b=2c (d) 1/a+1/b=2/c

If a, b , c are in GP, then 1/(a^(2 )−b^2 )+1/b^2 = ?

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

If a, b and c are in G.P. then prove that 1 a 2 - b 2 + 1 b 2 = 1 b 2 - c 2 . 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot