Home
Class 12
MATHS
The angle theta the line vecr=vecr+lamda...

The angle `theta` the line `vecr=vecr+lamdavecb` and the plane `vecr.hatn=d` is given by (A) `sin^-1((vecb.hatn)/(|vecn||vecb|))` (B) `cos^-1((vecb.hatn)/(|vecb|))` (C) `sin^-1((veca.hatn)/(|veca|))` (D) `cos^-1((veca.hatn)/(|veca|))`

Promotional Banner

Similar Questions

Explore conceptually related problems

A straighat line vecr=veca+lamdavecb meets the plane vecr.vecn=p in the point whose position vector is (A) veca+((veca.hatn)/(vecb.hatn))vecb (B) veca+((p-veca.hatn)/(vecb.hatn))vecb (C) veca-((veca.hatn)/(vecb.hatn))vecb (D) none of these

The equation of the plane contaiing the lines vecr=veca_(1)+lamda vecb and vecr=veca_(2)+muvecb is

The plane vecr cdot vecn = q will contain the line vecr = veca + lambda vecb if

The shortest distance between the lines vecr-veca+kvecb and vecr=veca+lvecc is ( vecb and vecc are non collinear) (A) 0 (B) |vecb.vecc| (C) (|vecbxxvecc|)/(|veca|) (D) (|vecb.vecc|)/(|veca|)

The equation of the plane containing the line vecr= veca + k vecb and perpendicular to the plane vecr . vecn =q is :

Lines vecr = veca_(1) + lambda vecb and vecr = veca_(2) + svecb_ will lie in a Plane if

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca_|_vecb and (veca+vecb)_|_(veca+mvecb) , then m= (A) -1 (B) 1 (C) (-|veca"|^2)/(|vecb|^2) (D) 0

Find the distance of the point veca from the plane vecr*hatn=d measured parallel to the line vecr=vecb+vec(tc) .

Distance of the point P(vecp) from the line vecr=veca+lamdavecb is (a) |(veca-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))| (b) |(vecb-vecp)+(((vecp-veca).vecb)vecb)/(|vecb|^(2))| (c) |(veca-vecp)+(((vecp-vecb).vecb)vecb)/(|vecb|^(2))| (d)none of these