Home
Class 12
MATHS
The direction ratio of the line OP are e...

The direction ratio of the line OP are equal and the length `OP=sqrt(3)`. Then the coordinates of the point P are
(A) `(-1,-1,-1)` (B) `(sqrt(3),sqrt(3),sqrt(3))` (C) `(sqrt(2),sqrt(2),sqrt(2))` (D) `(2,2,2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Simplify: (1)/(sqrt(3+2sqrt(2)))+(1)/(sqrt(3+2sqrt(2)))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

(sqrt(3)-1/(sqrt(3)))^2 is equal to

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

([(sqrt(2)+isqrt(3))+(sqrt(2)-isqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

A(1/(sqrt(2)),1/(sqrt(2))) is a point on the circle x^2+y^2=1 and B is another point on the circle such that are length A B=pi/2 units. Then, the coordinates of B can be (a) (1/(sqrt(2)),-1/sqrt(2)) (b) (-1/(sqrt(2)),1/sqrt(2)) (c) (-1/(sqrt(2)),-1/(sqrt(2))) (d) none of these

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is (a) 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)