Home
Class 12
MATHS
A unit vector hata makes an angle pi/4 w...

A unit vector `hata` makes an angle `pi/4` with z-axis, `if hata+hati+hatj` is a unit vector then `hata` is equal to
(A) `hati+hatj+hatk/2` (B) `hati/2+hatj/2-hatk/sqrt(2)` (C) `-hati/2-hat/2+hatk/sqrt(2)` (D) `hati/2-hatj/2-hatk/sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Unit vector perpnicular to vector A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk is

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is (a) (2hati - 6hatj + hatk)/sqrt41 (b) (2hati-3hatj)/sqrt13 (c) (3 hatj -hatk)/sqrt10 (d) (4hati + 3hatj - 3hatk)/sqrt34

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

A unit vector int eh plane of the vectors 2hati+hatj+hatk, hati-hatj+hatk and orthogonal to 5hati+2hatj-6hatk is (A) (6hati-5hatk)/sqrt(6) (B) (3hatj-hatk)/sqrt(10) (C) (hati-5hatj)/sqrt(29) (D) (2hati+hatj-2hatk)/3

The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk and is coplanar with the vectors 2hati+hatj+hatk and hati-hatj+hatk is (A) (2hati-6hatj+hatk)/sqrt(41) (B) (2hati-3hatj)/sqrt(3) (C) 3hatj-hatk)/sqrt(10) (D) (4hati+3hatj-3hatk)/sqrt(34)

If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .