Home
Class 12
MATHS
If the straight lines x=-1+s, y=3 -lamda...

If the straight lines `x=-1+s, y=3 -lamdas, z=1+lamdas and x=(t)/(2), y=1+t, z=2-t`, with parameters s and t, respectively, are coplanar, then find `lamda`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight lines x=-1+s ,y=3-lambdas ,z=1+lambdasa n dx=t/2,y=1+t ,z=2-t , with paramerters sa n dt , respectivley, are coplanar, then find lambdadot

If the straighat lines x=1+s,y=-3-lamdas,z=1+lamdas and x=t/2,y=1+t,z=2-t with parameters s and t respectively, are coplanar, then lamda equals (A) -1/2 (B) -1 (C) -2 (D) 0

{:{(x=t^(2)),(y=3t^(2)+1):} Eliminate the parameter and sketch the graph

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

If the lines (x-4)/1=(y-2)/1=(z-lamda)/3 and x/1=(y+2)/2=z/4 intersect each other, then lamda lies in the interval

If the straight lines (x-1)/(2)=(y+1)/(k)=(z)/(2) and (x+1)/(5)=(y+1)/(2)=(z)/(k) are coplanar, then the plane(s) containing these two lines is/are

If the parameter is eliminated from the equations x=t^(2)+1 and y=2t , then the relation between x and y is

If the lines 6x-2=3y+1=2z-2 and (x-2)/(lamda)=(2y-5)/(-3),z=-2 are perpendicular then lamda=

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

The value of lamda or which the straighat line (x-lamda)/3=(y-1)/(2+lamda)=(z-3)/(-1) may lie on the plane x-2y=0 (A) 2 (B) 0 (C) -1/2 (D) there is no such lamda