Home
Class 12
MATHS
The angle between the line vecr=(hati+2h...

The angle between the line `vecr=(hati+2hatj+3hatk)+lamda(2hati+3hatj+4hatk)` and the plane `vecr.(hati+2hatj-2hatk)=3` is (A) `0^0` (B) `60^0` (C) `30^0` (D) `90^0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Angle between the line vecr=(2hati-hatj+hatk)+lamda(-hati+hatj+hatk) and the plane vecr.(3hati+2hatj-hatk)=4 is

Find the angle between the line vecr=(hati+2hatj-hatk)+lamda(hati-hatj+hatk) and the plane ver.(2hati-hatj+hatk)=4

Find the angle between the line vecr = (2hati+hatj-hatk)+lambda(2hati+2hatj+hatk) and the plane vecr.(6hati-3hatj+2hatk)+1=0 .

The angle between the line vecr = ( 5 hati - hatj - 4 hatk ) + lamda ( 2 hati - hatj + hatk) and the plane vec r.( 3 hati - 4 hatj - hatk) + 5=0 is

The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+lambda(hati-hatj+4hatk) and the plane vecr.(hati + 5hatj + hatk) = 5 is :

The angle between the planes vecr.(2hati-hatj+hatk)=6 and vecr.(hati+hatj+2hatk)=5 is

Find the angle between the lines vecr = (hati+hatj)+lambda (hati+hatj+hatk)and vecr=(2hati-hatj)+t(2hati+3hatj+hatk)

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the lines vecr = (hati+hatj)+lambda(3hati+2hatj+6hatk) and vecr = (hati-hatk) + mu(hati+2hatj+2hatk)