Home
Class 12
MATHS
If veca is perpendiculasr to both vecb a...

If `veca` is perpendiculasr to both `vecb and vecc` then (A) `veca.(vecbxxvecc)=vec0` (B) `vecaxx(vecbxvecc)=vec0` (C) `vecaxx(vecb+vecc)=vec0` (D) `veca+(vecb+vecc)=vec0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively of a triangle ABC then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) veca.vecb=vecc=vecc=veca.a!=0 (D) vecaxxvecb+vecbxxvecc+veccxxvecavec0

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

Prove that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

If veca.vecb=0 and vecaxxvecb=0 prove that veca=vec0 or vecb=vec0 .