Home
Class 12
MATHS
If vecalpha=3hati-hatk, |vecbeta|=vec(5)...

If `vecalpha=3hati-hatk, |vecbeta|=vec(5) and vecalpha.vecbeta=3` then the area of the parallelogram for which `vecalpha and vecbeta ` are adjacent sides is (A) `sqrt(17)/2` (B) `sqrt(14)/2` (C) `sqrt(7)/2` (D) `sqrt(241)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Area of a parallelogram formed by vectors (3hati-2hatj+hatk)m and (hati+2hatj+3hatk) m as adjacent sides is

The area of a parallelogram whose diagonals are 3hati + 4 hatj,hati + hatj+ hatk is a) sqrt(26) b) sqrt(26)/(2) c) sqrt(26)/(3) d) none of these

If the vectors vec(PQ)=-3hati+4hatj+4hatk and vec(PR)=5hati-2hatj+4hatk are the sides of a triangle PQR, then the length o the median through P is (A) sqrt(14) (B) sqrt(15) (C) sqrt(17) (D) sqrt(18)

The rationalisation factor of 2+sqrt(3) is (a) 2-sqrt(3) (b) sqrt(2)+3 (c) sqrt(2)-3 (d) sqrt(3)-2

The rationalisation factor of sqrt(3) is (a) -sqrt(3) (b) 1/(sqrt(3)) (c) 2sqrt(3) (d) -2sqrt(3)

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is (a) 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(33) (B) sqrt(45) (C) sqrt(18) (D) sqrt(720

The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B) 17/sqrt(3) (C) 7sqrt(5)/15 (D) 3sqrt(5)/15

veca=hati-hatj+hatk and vecb=2hati+4hati+3hatk are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) 1/2 sqrt(83) (B) sqrt(83) (C) 1/2 sqrt(85) (D) sqrt(86)

Simplify : (7)/(sqrt(17) - 2sqrt3)-( 3)/(sqrt(17) +2sqrt3)