Home
Class 12
MATHS
If [vecaxxvecb vecbxxvecc veccxxveca]...

If `[vecaxxvecb vecbxxvecc veccxxveca]=lamda [veca vecb vecc]^2 then lamda ` is equal to (A) 1 (B) 2 (C) 3 (D) 0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

If vecAxx(vecBxxvecC)=vecBxx(vecCxxvecA) and [vecA vecB vecC]!=0 then vecA.(vecBxxvecC) is equal to (A) 0 (B) vecAxxvecB (C) vecBxxvecC (D) vecCxxvecA

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc] . If veca,vecb,vecc are coplanar then [veca+vecb vecb+vecc vecc+veca ] = (A) 1 (B) -1 (C) 0 (D) none of these

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

veca,vecb,vecc are 3 vectors, such that veca+vecb+vecc=0, |veca|=1,|vecb|=2,|vecc|=3, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) 0 (B) -7 (C) 7 (D) 1

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=