Home
Class 12
MATHS
Let veca,vecb,and vecc be three non-co...

`Let veca,vecb,and vecc` be three non-coplanar ubit vectors such the angle between every pair of them is `(pi)/(3). if vecaxxvecb+vecbxxvecc=pveca+qvecb+rvecc,` where p,q and r are scalars , then the value of `(p^(2)+2q^(2)+r^(2))/(q^(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec x=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec c=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

Let veca , vecb , and vecc be three non-coplanar unit vectors such that the angle between every pair of them is pi/3 ​ . If veca × vecb + vecb × vecc =p veca +q vecb +r vecc , where p,q and r are scalars, then the value of p 2 +2q 2 +r 2 /q2 ​ is

Let veca, vecb and vecc be non - coplanar unit vectors, equally inclined to one another at an angle theta . If veca xx vecb + vecb xx vecc = p veca + q vecb + rvecc , find scalars p, q and r in terms of theta .

Let veca, vecb , vecc be three vectors of equal magnitude such that the angle between each pair is pi/3 . If |veca + vecb + vecc| = sqrt6 , then |veca|=

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to