Home
Class 12
MATHS
Let O be the origin and let PQR be an ar...

Let `O` be the origin and let PQR be an arbitrary triangle. The point S is such that ` vec O Pdot vec O Q+ vec O Rdot vec O S= vec O Rdot vec O P+ vec O Qdot vec O S= vec O Q` .` vec O R+ vec O Pdot vec O S` Then the triangle PQ has S as its: circumcentre (b) orthocentre (c) incentre (d) centroid

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a ,\ vec O B= vec b ,\ then what is vec O C ?

Let O be the centre of a regular hexagon A B C D E F . Find the sum of the vectors vec O A , vec O B , vec O C , vec O D , vec O Ea n d vec O F .

Let A B C D be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

If 2 vec A C = 3 vec C B , then prove that 2 vec O A =3 vec C B then prove that 2 vec O A + 3 vec O B =5 vec O C where O is the origin.

If A B C D is a rhombus whose diagonals cut at the origin O , then proved that vec O A+ vec O B+ vec O C+ vec O D+ vec Odot

Statement 1: In "Delta"A B C , vec A B+ vec A B+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vec P O+ vec O Q= vec Q O+ vec O R , show that the point, P ,Q ,R are collinear.