Home
Class 11
MATHS
Solve: 4^((log2logx))=logx-(logx)^2+1 (...

Solve: `4^((log_2logx))=logx-(logx)^2+1` (base is e)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x((dy)/(dx))=y(logy-logx+1)

int(1)/(x(logx)log(logx))dx=

Evaluate: int(log(logx)+1/((logx)^2))dx

Solve log_x(x^2-1)<=0

The value of x satisfying 5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1) , where the base of logarithm is 10 is not : 67 divisible by

int(e^(7logx)-e^(6logx))/(e^(6logx)-e^(5logx))dx is:

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a) y/x(1n x^(oox-1))+21 nx1n(1nx)) (b) y/x(logx)^("log"(logx))(2log(logx)+1) (c) y/(x1nx)[(1nx)^2+21 n(1nx)] (d) y/x(logy)/(logx)[2log(logx)+1]

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

int[sin(logx)+cos(logx)]dx