Home
Class 11
MATHS
Number of integers satisfying the inequa...

Number of integers satisfying the inequality `(log)_(1/2)|x-3|>-1` is.....

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integers lt=10 satisfying the inequality 2(log)_(1/2)(x-1)lt=1/3-1/((log)_(x^2-x)8) is............

Number of intergers satisfying the inequality x^4- 29x^2+100 le 0 is

The number of integers satisfying the inequality log_(sqrt(0.9))log_(5)(sqrt(x^(2)+5+x))gt 0 is

Number of intergal values of x satisfying the inequality (x^2+6x-7)/(|x+2||x+3|) lt 0 is

Sum of all integral values of x satisfying the inequality (3^((5/2)log(12-3x)))-(3^(log x))>32 is......

The number of integral values of x satisfying the inequality (3/4)^(6x+10-x^2)<(27)/(64)i s________

Sum of integers satisfying sqrt((log)_2x-1)-1/2(log)_2(x^3)+2>0 is......

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

Let a >2 be a constant. If there are just 18 positive integers satisfying the inequality (x-a)(x-2a)(x-a^2)<0, then find the value of adot

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7