Home
Class 11
MATHS
If loge((a+b)/2)=1/2(loge a+loge b), the...

If `log_e((a+b)/2)=1/2(log_e a+log_e b),` then find the relation between `a a n d b dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

I=int \ log_e (log_ex)/(x(log_e x))dx

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

The value of (6a^((log)_e b)((log)_(a^2)b)((log)_(b^2)a))/(e^((log)_e a(log)_e b)) is (a) independent of a (b) independent of b (c) dependent on a (d) dependent on b

If (log)_2(a+b)+(log)_2(c+d)geq4. Then find the minimum value of the expression a+b+c+d

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0 and not equal to 1, then prove that b^2=a c