Home
Class 11
MATHS
If (log)b a(log)c a+(log)a b(log)c b+(lo...

If `(log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3` (where `a , b , c` are different positive real numbers `!=1),` then find the value of `a b c dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0 and not equal to 1, then prove that b^2=a c

If (log)_a3=2 and (log)_b8=3 , then prove that (log)_a b=(log)_3 4.

If x and y are positive real numbers such that 2log(2y - 3x) = log x + log y," then find the value of " x/y .

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

If a , b , c are consecutive positive integers and (log(1+a c)=2K , then the value of K is logb (b) loga (c) 2 (d) 1

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

If x ,y ,z are in G.P. and a^x=b^y=c^z , then (log)_b a=(log)_a c b. (log)_c b=(log)_a c c. (log)_b a=(log)_c b d. none of these

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)