Home
Class 11
MATHS
Solve for: x :(2x)^((log)b2)=(3x)^((log)...

Solve for: `x :(2x)^((log)_b2)=(3x)^((log)_b3)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 4^((log)_9x)-6x^((log)_9 2)+2^((log)_3 27)=0

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve : log_(x^(2)16+log_(2x)64=3 .

Solve (log)_(2x)2+(log)_4 2x=-3//2.

Solve x^(log_(4) x)=2^(3(log_(4)x+3) .

Solve: 1/4x^(log_2sqrt(x))=(2. x^((log)_2x))^(1/4)

Solve : 3^((log_9 x))xx2 = 3sqrt(3)

Solve x^((log)_y x)=2a n dy^((log)_x y)=16

Solve: |x-1|^((log)_(10)x)^2-(log)_(10)x^2=|x-1|^3