Home
Class 11
MATHS
If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1...

If `(log)_(10)[1/(2^x+x-1)]=x[(log)_(10)5-1]` , then `x=` 4 (b) 3 (c) 2 (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of the inequality (log)_(10)(x^2-16)lt=(log)_(10)(4x-11) is 4,oo) (b) (4,5) (c) ((11)/4,oo) (d) ((11)/4,5)

If log_(10) sin x+log_(10)cos x=-1 and log_(10)(sinx+cosx)=(log_(10)n-1)/2 then the value of n is (a) 24 (b) 36 (c) 20 (d) 12_

(log)_(x-1)x (log)_(x-2)(x-1) (log)_(x-12)(x-11)=2,x is equal to: 9 (b) 16 (c) 25 (d) none of these

If x y^2=4a n d(log)_3((log)_2x)+(log)_(1/3)((log)_(1/2)y)=1 ,then x equals (a) 4 (b) 8 (c) 16 (d) 64

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

If S={x in N :2+(log)_2sqrt(x+1)>1-(log)_(1/2)sqrt(4-x^2)} , then (a) S={1} (b) S=Z (d) S=N (d) none of these

Solve (log)_2(3x-2)=(log)_(1/2)x

If (x+1)^((log)_(10)(x+1))=100(x+1), then

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to (a) k (b) 1/5 (c) 5 (d) none of these