Home
Class 11
MATHS
If a^4b^5=1 then the value of loga(a^5b^...

If `a^4b^5=1` then the value of `log_a(a^5b^4)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that log_2 3 = a, log_3 5=b,log_7 2=c ,then the value of log_(140) 63 is equal to

Find the value of sqrt((log_(0.5)4)^(2)) .

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

If log_a(ab)=x then log_b(ab) is equals to

If log_4A = log_6B = log_9(A+B) then the value of B/A is

Log f(x)=log((log)_(1//3)((log)_7(sinx+a))) be defined for every real value of x , then the possible value of a is 3 (b) 4 (c) 5 (d) 6

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot